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MINIMAL SURFACES IN KAHLER SURFACES
AND RICCI CURVATURE

JON G. WOLFSON

Introduction

Let M be a surface immersed in a Kahler surface N. In [2] the author
and S. S. Chern defined a function @ on M which measures the deviation
of the tangent plane 7. M of M from a complex line of T, N. For example,
for p,g € M C N if a(p) = 0 then T,M is a complex line of T, N and if
a(g) = 7 then T, M is an anticomplex line of T, N. The point p is called a
complex tangent point of M and the point ¢ an anticomplex tangent point of
M. The analysis of [2] shows that when the immersion M — N is minimal,
the complex and anticomplex tangent points of M are isolated. Also, though
« is continuous everywhere on M, it fails to be differentiable at the complex
and anticomplex tangent points.

Assume that the immersion M — N is minimal and let P denote the
number of complex tangent points and ¢ denote the number of anticom-
plex tangent points both counted according to multiplicity. In [6] S. Webster
showed that

(0.1) —P —Q =x(M) + x(v),

where x(M) is the Euler characteristic of M, and x(v) is the Euler charac-
teristic of the normal bundle of M in N. Webster then used (0.1) to show
that there are no nonholomorphic minimally embedded two-spheres in CP2.
In [7] Webster showed that

(0.2) Q — P =ca(N)([M]),

where ¢1 (V) is the first Chern class of N and [M] € Hy(N; Z) is the homology
class of M in N. Both (0.1) and (0.2) are proved using global arguments.
The present paper began, in 1984, with an attempt to derive a local version
of (0.1). This attempt led to an upper bound on the first eigenvalue of a totally
real minimal surface in CP? (see Theorem 2.3). In §1 we derive local versions
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of (0.1) and (0.2) as follows. Set f(a) = In(tan? a/2) and g(a) = In(sin® @).
Then away from the complex and anticomplex tangent points,

(0.3) | i09f(a) = Ric,

(0.4) 100g(a) = (K + K,,) dvolyy,

where Ric is the pull-back to M of the Ricci 2-form of N, K is the Gauss
curvature of M, K, is the normal curvature of M in N and dvol,s is the
volume form on M. Taking the complex and anticomplex tangent points into
account leads to the equations of currents on M (1.26) and (1.27). Integration
then yields formulas (0.2) and (0.1) respectively. Our derivation of Webster’s
formulas is very much in the spirit of such classical algebraic geometric formu-
las as the Poincaré-Lelong equation and the Pliicker formulas. More recently
similar techniques have been employed in the study of harmonic maps of sur-
faces by R. Schoen and S. T. Yau [4] and by D. Toledo [5]. Classically given a
meromorphic section o of a hermitian line bundle L over a Riemann surface,
a formula relating the curvature of L and the divisor of ¢ can be found by
computing d91In|o|. Our derivations can be seen from this perspective by
considering the line bundles det(TWN) and T.M ® v over M.

The local formulas (1.26) and (1.27) are of interest themselves. For ex-
ample, in §2 we let N be a Kéhler-Einstein surface and show that if V has
negative scalar curvature and M is a totally real minimal surface in NV then M
is, in fact, Lagrangian. If NV is a Ricci flat Kahler surface and M is a totally
real minimal surface we show that there is a compatible complex structure on
N such that M is a holomorphic curve for this complex structure.

In §3 we use (0.1) and (0.2) to derive restrictions on homology classes that
can be represented by embedded minimal surfaces of genus g.

It is a pleasure to thank Chris Croke, Nick Buchdahl, Al Vitter and Ron
Fintushel for helpful discussions. We are also indebted to Rick Schoen and
Rob Kusner for their comments on the original version of this paper.

1. The equations

Let M be a compact, connected, oriented surface, let N be a compact
Kihler surface and let F: M — N be a minimal immersion. Throughout this
paper we assume, unless stated otherwise, that F is neither a holomorphic
nor an antiholomorphic map. All the results of this paper extend without
difficulty to branched minimal immersions. We will consequently generally
leave these considerations to the reader. The metric on M induced by F can
be written-
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(1.1) dsi, =¢og,

where ¢ is a complex valued 1-form defined up to a complex factor of norm
one. As in [2] we can choose a unitary coframe {w;,ws} for N such that

(1.2) wy=s¢,  wz =14,

where s and t are complex-valued functions on M. Since ds?, is the induced
metric, we have
w1 0@ +wy oW =¢og,

which yields [s|2 + |t|2 = 1. By setting
(1.3) [s] = cos /2, t| = sina/2,

where « is a function on M with values between 0 and =, we can choose a
unitary coframe {w,ws} satisfying

(1.4) w1 = COS %(ﬁ, wy = sin %(5

At a point p € M with a(p) = 0 the tangent plane T,M of M at p is a
complex line in Trp)N. Similarly at a point ¢ with a(g) = 7 the tangent
plane Ty M is an anticomplex line in Tr(4) N. Such points are called complex
(resp. anticomplez) tangent points. On a minimal surface the complex and
anticomplex tangent points are isolated. A surface which has no complex or
anticomplex tangent points is called totally real. We remark that while « is
a smooth function away from the complex and anticomplex tangent points
it is only continuous at these points. The nature of the singularities of « at
the complex and anticomplex tangent points is of fundamental interest to us.
However to begin we compute where « is smooth.
From (1.4) we have

. @ _
(1.5) sin Ecgl — ¢os FW2 = 0.

Taking the exterior derivative of (1.5) and using Cartan’s Lemma we have
(1.6) Flda + sino(wyg + wy3)] = ad + b9, w3z = b + ¢,

where (wag), 1 < a,B < 2, is the connection 1-form of N and the complex
valued functions a,b and ¢ are the components of the second fundamental
form of M in N (see [8]). The condition that ¥ is a minimal immersion is
expressed by '

(1.7) b=0.
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So

(1.8) 1ldo + sin (w1 + we3)] = ad.
Adding (1.8) and its conjugate we have

(1.9) do = a¢ + @d.

Thus

(1.10) da = ad = L{do — sin a(w;1 + wa3)]-

Taking the exterior derivative of (1.10) gives

= = 1 1
00a =doa = —3 cosada A (w1 + wes) — 2 sin Q47 + Qg3)
(L.11) .
= c.osaaa/\ da — 1sinaRic,
sin o 2

where —¢(Q2;7 + Q93) = Ric denotes the Ricci 2-form of N pulled back by F
to M. Set

(1.12) f(a) = In(tan®(a/2)).

Then

(1.13) 90 f(a) = f"(a)0a A da + f'(a)dda = —iRic.
Set

(1.14) g(a) = In(sin’ a).

Then

(1.15) 659(01) = —2¢sc’ada A o + 2 cot adda
. = —~20a A da — icosaRic.

(1.13) and (1.15), as equations of 2-forms, are valid away from the complex
and anticomplex tangent points of M. To simplify (1.15) we note that by
(1.4),
o . o
¢ = COS Ewl 4+ sin 50.)2.
So o e
d¢ = (0052 Wil + sin? 5(&)25) A ¢.
And thus since d¢ = —ip A ¢,
(1.16) ip = sin® %w2§ — cos? %wﬂ,
where p is the connection 1-form of ds?,. Similarly,

. .o
(1.17) ip, = sin? Paati cos? %wzg,
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where p,, is the connection 1-form of the normal bundle . The Gauss curva-
ture K of M is uniquely determined by the equation

(1.18) dp = —K%q&/\(}.
The normal curvature K, of v is uniquely determined by the equation
(1.19) dpy = —K,,%qb A .

Taking the exterior derivative of (1.16) and (1.17) and using (1.18) and (1.19)
we have

(1.20) LK+ K,)pAd=—20aA0a—icosaRic.
Combining (1.15) and (1.20) we have
(1.21) d9g(a) = —i(K + K,)) dvolyy,

where dvolp = (i/2)¢ A ¢ is the volume form of M.
To analyse (1.13) and (1.21) at the singularities of o we return to (1.2).
Taking the exterior derivative of the first equation of (1.2) we have

(1.22) (ds —ips — swy7) A d = 0.
Let ¢ be a local complex coordinate on M. Then (1.22) gives
0s
1.23 —= =sh
( ) aé; 5 ?

where h is the complex-valued function such that hd¢ is the (0,1) part of
tp + wy1. A well-known result of Bers [1] then implies that the zeros of s are
isolated and that if the complex coordinate ¢ is centered at a zero g of s, then
near q

(1.24) s =8¢,

where 3(g) # 0 and o is a positive integer. Similarly if ¢ is centered at a zero
p of t then near p

(1.25) ‘ t =",

where t(p) # 0 and 7 is a positive integer. The point p is a complex tangent
point of order 7 (write, ord{(p) = 7). The point ¢ is an anticomplex tangent
point of order o (ord(g) = o). We remark that the index of a complex or
anticomplex tangent point as defined by Webster [1] is the negative of the
order of the point as defined here.

For x € M let 6, denote the Dirac delta function at z.

Theorem 1.1. Let F: M — N be a minimal immersion of the surface
M 1into the Kdhler surface N. Denote the complex tangent points of M by
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{px} and the anticomplez tangent points of M by {qi}. Then the equations of
currents

(1.26) 38 f(a) + 1 Ric = 27i {Z ord(q:)6,, — Y ord(pk)p, } ,
) k

ddg(a) +i(K + K,) dvolpy

(1.27) = —2mi {E ord(g;)éq, + Z ord(p )bp, }
/ k

hold on M.

Proof. We prove (1.26), the proof of (1.27) being entirely similar.

Choose € > 0 so small that the e-balls B.(px) and B (q;) centered at the
px and the ¢, are pairwise disjoint. For any & € C* (M) by (1.13)

(1.28) /Mh(agf(a)+iRic)=€li_% {E / L M@3](@) +iRic)

+zj/

e (@)

h(80f(a) + iRic)} .
Now for each pg, by Stokes’ theorem,
(1.29)

lim h(80 f(a) + i Ric)
€—0 B (px)

= lim / hdf(a) — / Ok ABf(a) + / hiRic § .
€—0 | JoB. (pk) Be (px) B. (pe)

Let ¢ be a local complex coordinate centered at pr. Then t satisfies (1.25)
with 7 = ord(px) and s(pg) # 0. Using (1.3) we obtain

(1.30) 8f(a)=dIn (:”IZ) —5ln (Il ||22> L BIn(cor ) 4 §In(EErdler)).

Hence,

. d$

lim hdf(e) = lim hord(pr)—=

(1.31) €20 JoB.(pi) Jle) = I B¢ (px) 3
= =271 ord(pk ) h(pk),

since the first term in the right-hand side of (1.30) is bounded and the second
term is zero. Also using (1.30) the other two integrals in the right-hand side
of {(1.29) go to zero as £ — (. Similarly,
(1.32) lim h(88f(a) + i Ric) = 2riord(g;)h(q)-

€0 B, (a1)
(1.26) follows.
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Remarks. (1) If F: M — N is a branched minimal immersion, equation
(1.26) remains true. (1.27) must be altered by the addition of branching index
terms to the right-hand side. We leave the details to the reader.

(2) Using (1.24) and (1.25) it is straightforward to verify that both f(a)
and g(a) are in LP(M) for 0 < p < 00, and in L¥(M) for 1 < p < 2. If
f(a) € L2(M) (or g(a) € L3(M)), then the singularities of f(a) (or g(a)) are
removable and the immersion is totally real.

Corollary 1.2. With the hypotheses of the theorem, let P denote the sum
of the orders of all the complex tangent points, and Q denote the sum of the
orders of all the anticomplez tangent points. Then

(1.33) Q=P =F*c;(N)[M],

(1.34) —(Q@+ P) = x(M) + x(v),

where ¢y (N) is the first Chern class of N, [M] s the fundamental homology
class of M, x(M) is the Euler characteristic of M, and x(v) is the Euler
characteristic of v.

Proof. Recall that the first Chern form of N satisfies ¢; (V) = (1/27) Ric.
Thus integrating the left-hand side of (1.26) against the test function h = 1
gives

i[M Ric = 27rz'fM c1(N) = 2miF*e1 (N)[M],

and (1.33) follows. Integrating the left-hand side of (1.27) against A = 1 gives
z'[KdvolM +i[KudvolM = 2mi(x(M) + x(v)),

and (1.34) follows. q.e.d.

As mentioned in the Introduction Webster proved (1.33) and (1.34) using
global arguments.

Remark. If H: M — N is a holomorphic curve, then using the above
notation

He, (N)[M] = x(M) + x(v).

(1.33) and (1.34) can be regarded as measuring the “global” deviation of this
formula for a minimal immersion.

2. Applications: Kihler-Einstein surfaces

Let w denote the Kahler form of N, and let Ric denote the Ricci 2-form
of N. In this section we will assume that N is a Kahler-Einstein surface, i.e.,
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there is a constant ¢ such that

(2.1) Ric = ew.

The existence of many examples of such Kihler surfaces is assured by Yau'’s
proof of the Calabi conjecture [10]. The scalar curvature of N, denoted R, is,
by definition,

(2.2) R = tr(Ric).

It follows from (2.1) that R is constant and that ¢ = R. On M the Kéahler
form can be written

(2.3) w= %(wl A @) +wg Adg) = %cosaq&/\q_b.
Also,

(2.4) 30f(a) = A1 (2)p A S,

where —A is the Laplace-Beltrami operator on M. Setting
(2.5) v = f(a),

(1.13) becomes

(2.6) Au = 2Rh(u),

where h(z) = cosof~1(z). From (1.12) we get f~!(z) = 2arctan(e*/?) and
so,

(2.7 h(z) = — tanh(z/2),
and (2.6) becomes
(2.8) Au = —R tanh(x).

A surface immersed in N, j: M — N, is called Lagrangian if 7*w = 0. By
(2.3) this is equivalent to o = /2.

Theorem 2.1. Let N be a Kdahler-Einstein surface of negative scalar
curvature. If F: M — N is a totally real (branched) minimal immersion,
then F: M — N s Lagrangian. '

Proof. Note that u = f(a) is a C* function since F: M — N is totally
real. (u extends smoothly across branch points.) The maximum principle
applied to (2.8) implies that u attains its maximum when ¢ < 0. On the
other hand the minimum principle implies that u attains its minimum when
v >0. Hence u =0 or a = 7/2.

A Ricci-flat K3 surface (i.e., a Ricci-flat simply-connected Kahler surface)
admits a family of complex structures, parametrized by the two-sphere, with
the property that each complex structure of this family together with the



MINIMAL SURFACES IN KAHLER SURFACES 289

metric of the surface determines a distinet Kéhler structure. We say each of
these complex structures is “compatible with the metric.”

Theorem 2.2. Let N be a Ricci-flat K3 surface and let F: M — N be a
totally real (branched) minimal immersion. With respect to one of the complex
structures on N compatible with the metric, F: M — N is a holomorphic map.

Proof. The equation Au = 0 implies that, for any of the compatible com-
plex structures, o = constant. Choose a point p € M and consider the tangent
plane T, M as a subspace of Tr(,) N. One of the compatible complex struc-
tures on NV gives a complex structure on the vector space Tr(;) N such that
T,M is a complex line. For this complex structure a(p) = 0. But « is con-
stant on M. Consequently & =0 and F': M — N is a holomorphic curve for
this complex structure.

Theorem 2.3. Let N be an Kdihler-Einstein surface of posttive scalar
curvature B. Let F: M — N be a totally real (branched) minimal immer-
ston which is not Lagrangian. Then M\(M) < R, where A\1(M) is the first
etgenvalue of the Laplace-Beltram: operator on M with the induced metric.

Proof. The assumptions of the theorem imply that (2.6) has a nonconstant
solution u. This solution satisfies [, h(u)dvol = 0. The Poincaré equality
gives that

AL = inf Jas IVE[2 dvol
k [y k?dvol
where the inf is taken over functions k satisfying | ar kdvol = 0. Applying this
to h(u) we have

/ (h(w))? dvol < i/ Vh(u)|? dvol.
M Y
From (2.7) we have |h'(u)| < 7 and so

[VR(u)[* = b (@)]?[Vul® < § Ik ()] [Vul?
with equality if and only if u = 0. Hence

/ (h(u))? dvol < i/ 1Ih'(u)l |Vu|? dvol.

M ArSm 2

From (2.6) we have
/ [Au - h(u) — 2R(h(u))?] dvol = 0.
M

Integrating by parts,

/ [ (w)|Vul? + 2R(h(w))?] dvol = 0,
M
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SO
0</ Vul? [h'(u)+iR|h'(u)| dvol.
M A

As u is not constant, {Vu|? is not identically zero. Thus for some point p € M
1
K (u(p)) + /\—lth'(U(P))l > 0.

But A'(u(p)) < 0, so we have A\; < B. q.e.d.

The proof of this theorem is the result of discussions with C. Croke. It is
a pleasure to thank him.

Remark. If N is CP? equipped with the Fubini-Study metric of constant
holomorphic bisectional curvature 4, then B = 6. The eigenvalue estimate
becomes A\; < 6. In CP? there is a minimal Lagrangian torus with A; = 6,
namely the Clifford torus (see [6] or [9] for details). Thus the requirement
that M not be Lagrangian is necessary.

Theorem 2.4. Let N be an Kahler-Einstein surface of scalar curvature
R, and let F: M — N be a (branched) minimal immersion. Then

Q- P=1RdegF.

Proof. The proof is left to the reader.

Corollary 2.5. @ = P when N is Ricci flai.

This corollary was first observed by Al Vitter by showing that when N is
Ricci flat, the function s/ of (1.2) is meromorphic.

Now consider (1.15) under the assumption that N is a Kéhler-Einstein
surface. (2.1)-(2.4) imply that (1.15) becomes

(2.9) Ag(a) = —2|Va|? + 2R cos’ a,
where the gradient, Va, of o satisfies
(2.10) daAda=1|Val?p A ¢

A point p € M is called a Lagrangian point if T,M C Tr,) N is a Lagrangian
plane or, equivalently, if a(p) = 7 /2.

Proposition 2.6. If N is a Kdkler-Einstein surface with positive scalar
curvature, and F': M — N is a minimal immersion, then the set of La-
grangion points on M equals the set of local mazimum points of g(a) on M.
Consequently every such minimal surface admits Lagrangian points.

Proof. Clearly at the Lagrangian points the function g(a) = In(sin® )
assumes its maximum value. Suppose that p € M is a local maximum point
of g(o). At p,

0= Vg{a) =2cota- Va.
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So either (Va)(p) = 0 or a(p) = =/2. If the latter holds we are done, so
suppose (Va)(p) = 0. Then (2.9) gives

0> (Ag(e))(p) = 2R cos® a(p).
This implies a(p) = 7/2.

3. Applications: Global results

Let V be a compact Kahler surface equipped with any K&hler metric, and
F: M — N be an immersion. If g is the genus of M then

(3.1) x(M) =2 -2g.

Let F\[M]* € H?(N;Z) denote the Poincaré dual of F.[M]. The self-
intersection number, Ip, of M is

(3.2) Ir = (B [MJ* U F[M]¥)([N)).
Let Dr denote the number of double points of F. Then
(3.3) x(v)=1p — 2Dp.

(3.1) and (3.3) together with (1.33) and (1.34) show that P and @ are de-
termined by the homology class of F,[M] and the number of double points
of F. In particular if F is an embedding, then P and @ are determined by
homology only. Setting

(3.4) c1(N)(Fu[M]) = c1(F),
we have
Theorem 3.1. Let F: M — N be a minimal tmmersion. Then
(3.5) (2—-29)+|er(F)|+Ir —2Dp < —2min(P,Q) <0.
If F 1s, in addition, an embedding, then
(3.6) (2-2¢9)+ |ea(F)|+ Ir < —2min(P,Q) < 0.

Proof. The proof is left to the reader.

Theorem 3.1 has many consequences. For example we have

Corollary 3.2. A homology class B € Ho(N; Z) satisfying (8% US#)[N]
> 2go0 — 1 cannot be represented by an embedded minimal surface of genus
9 < go.

Corollary 3.3. If N is Ricci flat, and 3 € Ha(N; Z) is a homology class
satisfying (8% U B#)([N]) > 290 — 2, then an embedded minimal surface of
genus g < go must have genus gg and must be holomorphic for one of the
compatible complex structures on N.
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Proof. As N is Ricci flat, ¢;(N) = 0. Thus (2—2¢)+Ir < 0, for a minimal
embedding F: M — N, with equality if and only if M is totally real. The
result follows from Corollary 3.2 and Theorem 2.2.

Let N be CP? equipped with any Kihler metric. We normalize this metric
so that its Kahler form w satisfies (1/7) [gp: w = 1. If F: M — N has degree
d, then

(3.7) Q — P = ¢, (N)(F.M]) = 3d.

Thus Theorem 3.1 becomes
Corollary 3.4. Let F: M — CP? be a minimal immersion of degree d.
Then

(3.8) (2 — 2g) + 3|d| + d® — 2Dp < —2min(P,Q) < 0.
If F is, in addition, an embedding, then
(3.9) (2 — 2g) + 3|d} + d*> < —2min(P,Q) < 0.

Corollary 3.4 is due to Webster [7]. Its consequences when g = 0 or 1
are investigated in [6] and when g = 2 in [7]. We discuss the case ¢ = 3
to illustrate the use of this result. (3.7) and (3.9) imply that an embedded
minimal surface of genus 3 either has degree zero and two complex and two
anticomplex tangent points or has degree 1 and three anticomplex tangent
points. (The case degree —1 and three complex tangent points is the latter
case with the orientation reversed.) The reader can continue this analysis and
apply similar reasoning to (3.5) and (3.6). Note that, except in genus one,
there are no totally real embedded minimal surfaces in CP2.

Example. Superminimal surfaces and the Plicker formulas. Let N be
CP? equipped with the Fubini-Study metric. We consider the superminimal
surfaces as described in [2]. Take a holomorphic curve hg: M — CP?2, where
M is a Riemann surface of genus g. Its first associated curve h;: M —
G(2,3) =~ CP? is given by hi(¢) = ho(¢) A hh(¢) for ¢ € M. The line in
ho(¢) A hy(¢) orthogonal to hg(¢) describes a map h: M — CP? which is
minimal. Such minimal maps are called superminimal. We remark that when
M has genus zero, every minimal map is superminimal.

The geometry of a holomorphic curve and its associated curve is classically
described in the Pliicker formulas [3]. Let 3, [ = 0, 1, be the total ramification
index of h;, and let d;, [ = 0,1, denote the degree of h;. Then the Pliicker
formulas are

(3.10) —do+2d, = —(2g — 2) + B4, —2dg+dy = (29 - 2) - Bo-

We can relate the invariants 3, and d; to the superminimal surface h.
Choose a unitary framing {Zy, Z;, Z,} of C® along M adapted to our situation
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as follows. Let Z(¢) be a vector in C? representing ho(¢), and let Zy(¢)AZ;1(¢)
represent hy(¢) for ¢ € M. Then the vector Z; is a homogeneous coordinate
vector for the map h. We have

Zo ’d’g(‘) 1/)01 0 Zo
(3.11) dl Zi |=| %1 Y11 %z || 2% ),

2y 0 Y1z ¥ Za
where the 1-forms ¢y; and ¢,5 are of type (1,0). Write
(3.12) ¥z =59,  —Poi =14

These equations are equivalent to (1.2) for the minimal immersion k. Conse-
quently the number of zeros of ¢ counted according to multiplicity is P, and
the number of zeros of s counted according to multiplicity is . On the other
hand by the definition of the ramification index of hg and hy, Gp is the number
of zeros of ¥y1, and £, is the number of zeros of 1,5 both counted according
to multiplicity. Hence,

(3.13) Po=P, B=Q.
The degree of a map g: M — CP? can be computed by

degg = z / g*w,
™M

where w is the Kahler form. Thus

1 - -
(314) d=degh == [ s Aus+ s Avi

T J M

=degh; — degho = d; — dp.

Adding the Pliicker formulas (3.10) we have
(3.15) 3(d1 — do) = B1 — fo.

From (3.13) and (3.14) this is (3.7). For superminimal surfaces in CP? formula
(1.33) is a consequence of the classical Pliicker formulas. We also note that
the superminimal surfaces provide solutions with singularities of (2.8) with
R>0.
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